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The elementary sources of multipole radiation 

E G Peter Rowe 
Mathematics Department, University of Durham. Durham, UK 

Received 3 Ju ly  1978 

Abstract. Starting from decomposition theorems for arbitrary vector fields, the elementary 
point sources generating pure multipole radiation are found. 

1. Introduction 

Multipole radiation has been discussed very many times. An extensive list of references 
is included in Gray (1978). A discussion of the harmonic case using the usual vector 
potential is a little awkward but can be achieved, even with considerable elegance 
(Wallace 1951). Bouwkamp and Casimir (1954) found a straightforward approach 
based on the differential equations satisfied by the radial components x .  E and x .  B. In  
the course of their analysis, they proved that the divergence-free electric and magnetic 
fields in empty space could be represented in terms of Debye potentials, in the form 

x x V P  + 0 x (x x V)S. 

Nisbet (1955aj found a potential representation of E and B which was valid within the 
source. He had previously discussed the history and arbitrariness of various scalar and 
vector potentials in a wider context (Nisbet 1955b, in which references to the earlier 
work of Debye, Whittaker, Hertz and Bromwich may be found). 

In the present treatment decomposition theorems which are true for all vector fields 
have been dealt with separately (Rowe 1979). It is hoped that in this paper the real 
simplicity of the electromagnetic part of the multipole argument will show itself when 
the decomposition theorems are used consistently from the beginning. 

In electrostatics one can give a natural distribution-theory definition of singular 
spherical harmonics and spherical 6 functions so that Poisson's equation 

is satisfied (Rowe 1978). The spherical 6 function is the point source which generates a 
pure multipole field. One can do something similar for the sources of multipole 
radiation. 

A general current j can be decomposed uniquely into three parts determined by 
three scalar potentials P, Q and R .  The scalar potentials themselves can be decom- 
posed into spherical 8 functions and their derivatives. This is done in 5 2. The spherical 
6 functions are point sources for certain distribution theory solutions of Helmholtz 
equations. The relevant formulae, derived in P 3, generalise derivative multipole 
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relations of van der Pol (1936) and Erdelyi (1937) to include the behaviour around the 
singularity. In § 4, harmonic multipole radiation is discussed in what appears to be its 
simplest possible form. It is generated by V XI, or the potentials P and R .  A St, term in 
R [ P )  is an elementary point source generating pure 2' electric [magnetic) multipole 
radiation. Nonharmonic multipole radiation is included for completeness in 5 5 .  

2. Decomposition of the electric current into elementary components 

An electric current j ,  which may be a conserved time-independent current j ( x ) ,  a 
time-dependent current j ( x ,  t ) ,  or a Fourier component j ( x ,  w ) ,  is a vector field which 
may therefore be decomposed (Rowe 1979): 

j = x  x V P ( x ) + V Q ( x ) + x R ( x ) .  (1) 

The implied origin 0 is presumed to be near or within the current distribution. The 
potentials P, Q and R are unique if they are subjected to 

1 dR P =  I dR Q=0, (2) 

in which the integrals are over the surface of any sphere with centre 0. The potentials 
depend on t or w if j does. 

If the current is conserved, V . j = 0, (1) takes the simpler form 

j = x x V P + V  x ( x  XV)S (3) 

in terms of unique potentials if 

j dR P =  1 dR S = 0 .  (4) 

Whether j is conserved or not, V x j  is conserved, and 

V x j = V  x (X x V ) P - X  x V R .  ( 5 )  

In ( 5 ) ,  R may be replaced by 

since the difference contributes nothing, and then P and R' satisfy the conditions 
corresponding to (4). 

In any realistic case j will be spatially bounded; that is, it will vanish outside some 
sphere with centre 0. The same will be true of the scalar potentials. They can then be 
expanded in a series of spherical S functions and their derivatives (powers of V2). 

To get these expansions explicitly one uses the formal series (Rowe 1978) 

e x p ( - x ' . ~ )  = 477 1 Y T , ( ~ ' ) S ' ( ~ ' * V * ) Y , , ( - V )  (7) 

where Ylm(x') = r"Ylm(i?') is a solid spherical harmonic, Yi,(-V) = ( - l ) ' Y [ , ( V )  is a 
polynomial differential operator obtained by replacing Cartesian coordinates with 
derivatives in the solid spherical harmonics, and the function SI is defined by 

im 

X K  13 zo 2KK!(21+2K + I)!!. 
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There is a connection between SI  and the spherical Bessel function j l  given by 

S1(-x2) = j / ( X ) / X ’ .  (9) 

Equation (9), which follows from (8), will be needed in the next section. 

done in 
Using (7) one can develop each of the spatially bounded scalar potentials, as P ( x )  is 

P ( x )  = dx’ S(X - x‘)P(x’) I 
= j dx’ exp(-x’.V) G(x)P(x’) 

= 477 1 dx’ P(x’ )YT, (x ‘ )S l ( r ’*V2)YI , ( -V)  S(x) 
Im 

= 477 (21 - l)!! dx’ P ( x ’ )  Y k  (x’)S,(r’’V2) SIm(x), (10) 
im J 

where the spherical 6 function is defined by 

It is the source in Poisson’s equation for a singular spherical harmonic 

= -477 S,,(x). (12) 

Equation (12) is a distribution-theory formula. 
The expansion (10) is really only valid in the context of analytic test functions, but 

the moments involved are sufficient to characterise the spatially bounded potential P 
(Dixon 1967). 

From (2) and (4) the potentials P, Q and S have no 1 = 0 components, but in general 
R will have such components. From the uniqueness of the potentials in (l), together 
with the expansions of the form ( lo) ,  we can identify independent elementary currents 
in terms of which a general current j’ may be regarded as built up: 

( a )  (x x v ) T ~ ~  8tm(x) (1 > 0, K 2 0 )  

(6) VvZK 6lm(x) 

( c )  X V z K  6’m(X) 

( I  > 0, K 2 0) 

( I  3 0, K 3 0 except 1 = K = 0). 

In (c) the case 1 = K = 0 is excluded because xS(x)  = 0 (in general, X ”  S“’(x) = 0 if 
n > m ) .  The currents ( a )  are automatically conserved. If i is conserved, it is composed 
of currents ( a )  and combinations of ( b )  and (c)  of the form 

( l>O,Kz=O).  (d)  V x (X X V)VZK 61m(x) 

One may consider finite combinations of the elementary currents or infinite combina- 
tions corresponding to spatially bounded sources. 

The two simplest examples of elementary currents are those which give rise to 
electric and magnetic dipole radiation. 
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For an oscillating electric dipole, 

j ( x ,  w )  = -iwpS(x) 

p(x, w )  = -p.V S(x) 

Re(e-’”‘j(x, w ) )  = -w sin wtp S(x) 

Re(e-lwfp(x, w ) )  = -cos wrp.V S(x). 

Since 
p . V ( x S ( x ) ) = 0 = p S ( x ) + x ( p . V )  S(x), 

the only non-zero potential for this case is 

R ( x )  = +iwp.V S(x). 

For an oscillating magnetic dipole, p = 0 and 

j(x, U )  = -cm x V S(x) Re(e-’”‘j) = -c cos wtm X V  S(x). 

The only non-zero potential is 

P ( x )  = cm.V S(x) .  

3. Elementary solutions of inhomogeneous Helmholtz equations 

When the potential functions of the last section are used, as they will be in the next 
section, to discuss multipole radiation, Helmholtz‘s equation, 

(C2+ k 2 ) f ( x )  = - 4 ~ g ( ~ )  (15) 

arises. The source, g(x),  is a potential function which may be developed in a series of 
terms VZK Si,(x) as in equation (10). We want to find the solution of (15) for the case 
when the source function is a single term of the series. 

With the physical applications in mind, only a solution of (1 5 )  satisfying the outgoing 
wave boundary condition is considered. For sufficiently smooth g(x),  this solution is 

g(x’) exp(iklx -x’ ; )  
Ix - X’I 

f ( x )  = / dx’ 

For r’= lx’, < r 1x1, we have the familiar expansion (Jackson 1975, p 742) 

If r > lx‘l where g(x’) # 0 we can combine (16) and (17) to give a multipole expansion 

On the other hand, the RHS of (17) may be regarded as a Taylor series (in x’) for the 
L.HS, more specifically as a ‘spherical Taylor series’ if  we compare it  with the general 
development of an analytic function 9 ( x ’ )  obtained by using (7): 

9 ( x ’ )  = exp(+x’. V ’ ) 9 ( 0 )  

I t  is understood in (19) that in the expansion of Si(r‘*V’*), (r’2V’2)K is interpreted as 
r r 2 K ( V t 2 ) K .  
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Comparing (17) and (19) 

elkr 
= S,(-r '2k2)Yim(-V) - r 

In the last two steps, (C2 + k2)(eIkr/r) = 0 (r > 0) and equation (9) have been used. From 
(20) we have 

for r>O.  Using the small argument form for h i1 ' ,  and letting k + O  for fixed r, (21) 
reduces to 

a distribution-theory form of which has been quoted in (12).  
Equation (21), derived for r > 0, may be compared with the somewhat different 

forms given by van der Pol (1936) and ErdClyi (1937). The  RHS may be expressed in 
several different ways as a differential operator acting on  eIkr/r because this function 
satisfies the homogeneous Helmholtz equation for r # 0. The  differences become 
important if we want to generalise the formulae by interpreting the derivatives in the 
distribution theory sense. 

We  adopt (21) as a distribution theory definition of the RHS, the derivatives on the 
left being interpreted as those of distribution theory 

If the test function 4 is zero in a neighbourhood of the origin, we may write 

and recover the function form of (21) in the region r > 0. Again, for a test function that 
vanishes near r = 0, we have 

elkr elkr 
r r 

(S,(r"G2)Yl,(-V) -, 4) = dxS/(-k2r'2)Yl,(-V) -d 

i/ (kr') elkr 
(kr  ) 

=-( Y/m(-V) - >  r 4). 
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With the distribution-theory interpretation of (21) we can deduce from (11) and 

elkr 
r 

(V2 + k 2 )  - = -45T S(x) 

that 

and 

Equations (26) and (27) relate elementary sources to their causal, outgoing responses. 

( V 2 + k 2 ) f ( x )  =47r c (21- l)!! 1 dx' ~(~')YT,(~')SI(~'~V~)(-~~TS~~(X)), 

we may formally solve it by using (26): 

If g(x) in (15) is expanded as in (lo), so that the former equation reads 

(28) 
im 

For x outside the region where g(x') # 0, (24) converts (29) back to (18). 

4. Harmonic multipole radiation 

Maxwell's equations for a Fourier component with time dependence e-'"' are (Jackson 
197 5 )  

V . E = 4 5 ~ p  V . B = O  

V x E = i(w/c)B V x B  = -i(w/c)E + (45~/c) j  

in Gaussian units. Current conservation implies 

V. j - iwp=O. 

For w # 0 we therefore have 

V . [E + i(47r/w ) j ]  = V . B = 0 

and 

V x [ E  + i(45~/w)j] = i(w/c)B + i(47r/w)V x j 

V x B = -i(w/c)[E + i(45~/w)j]. 

The two divergence-free fields in (32) may be decomposed by uniquely definable 
scalar potentials as in (3), (4): 

E +i(47r/w)j = x X V  W + V  x (x x V ) X  ( 3 5 )  
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B = x x V Y  + V  x (x X V)Z (36) 

(compare Bouwkamp and Casimir 1954, Nisbet 1955a, Gray 1978). 

for V x i ,  we get, by identifying the unique potentials, 

W = i(w/c)Z + i(477lw)P 

-V'X = i(w/c) Y - i (477/w)~'  

Y = -i(w/c)X 

-v2z = -i(w/c) W. 

Substituting (35) and (36) in (33) and (34), and using the decomposition (5) with (6) 

Using the decomposition (1) for j ,  Maxwell's equations simplify to the expressions 

E = i(w/c)x X V Z  + V x  (x xV)X-i(4rr/w)(VQ+xR) (37) 

B = - i ( w / c ) x ~ V X + V x ( x ~ V ) 2  (38) 

for the fields in terms of the potentials, and the scalar Helmholtz equations relating the 
E, B potentials to the current potentials 

[v2+ (w2/c2) ]x  = i (477/w)~'  (39) 

[V2+ ( w 2 / c 2 ) ] 2  = -(477/c)P. (40) 

Outside the source, j vanishes, as do the potentials P, 0, R, so the expressions for E 
and B take a simple and symmetric form. Electric multipole radiation, satisfying 
x.B = 0, is generated by the current potential R' ,  and magnetic multipole radiation is 
generated by P. The multipole expansion for E and B arises by writing the solutions of 
(39) and (40) in the form (18). Elementary solutions, for currents determined by a 
single term VZK S,,(x) in R' or P, are obtained by using (27). 

For an oscillating electric dipole, 

j ( x ,  w )  = -iwp S(x) 

p(x, w )  = -p.v S(x) 

and 

R ( x )  = R ' ( x )  = +iwp.V S(x), 

so that, from (39) and (251, 

elkr 
r 

x = p . v -  (k = w / c ) .  

Outside the source, 

e ~ k r  elkr 
B = -ikx xVp.V -= ikp x V  -. 

r r (43) 

For the magnetic dipole, equation (14) gives P =  cm.V S(x), and so 2 = 
m . V(e"'/r). The fields are obtained from (42) and (43) by p + m, B + - E ,  E + B. 
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Static fields correspond to S ( W )  terms in the Fourier transforms. For the charge 
density we write S ( o ) p o ( x ) ,  and we similarly introduce j o ,  Eo, Bo. Maxwell's equations 
(30) reduce to 

V .  E o  = 4 ~ ~ 0 ,  V x E o = O  

V.B , ,  = 0, 

v.jo = 0. 

V x Bo = (4 T /  c ) j ~  

The electrostatic multipole field is developed in the usual way by introducing a scalar 
potential Eo = -V&. For the divergence-free steady magnetic field we have, as in (361, 

(44) Bo = x x v Y,,+V x (x x Vi&, 

so 

v x Bo = v x (x x V) Yo-x x V(02Z0).  (45) 

The conserved current j 0  has the development (3): 

jo = x x VPO + v x (x x V)S,). (46) 

Therefore, since the potentials are unique, 

Yo = (4T/C)SO, O'Z" = -(47r/C)Po. (47) 

The equation for Zo can be solved and expanded in multipoles Yl , , , (x) / r2 '+' .  Since So 
vanishes outside the source, so does Yo; and since Po vanishes there too, V*ZO = 0. In  
this region 

(48) Bo = V x (x x V)ZO = -V( 1 + r a/ar)Zo, 

whose multipole expansion has the same form as that for Eo. 

5. Nonharmonic multipole radiation 

For the case when the time dependence is not harmonic we no longer have the relation 
(31) for p in terms of V . j ,  and so we can no longer introduce potentials for the electric 
field on the basis of (32). Instead we may express the charge density in the form 

p ( x ,  t )  = -V. (VQ + x R ) ,  (49) 
from which we get 

V . ( E  + 4 TVQ + 4 TXR ) = 0. 

From (49) 

( a p / a t ) + v . ( v Q + x k )  = 0, 

so that charge conservation implies that the current has the form 

j ( x ,  t )  = x x V P  + v  x (x x V)S  + v Q  + x R .  (52) 

When Q and R have been fixed, a knowledge of j will permit the calculation of P and S 
(Rowe 1979). Therefore they may be assumed to be known. 
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Equation (49)  has many solutions, a useful one  of which is suggested by writing it in 
the form 

If we introduce the average charge density on the sphere with radius r 

( 5 3 )  

then we can define Q to be the unique solution to 

(x x V)’Q + r 2 ( p  - 6) = 0 ( 5 5 )  

which satisfies 0 = 0. Q vanishes outside a sphere which contains the sources, and 
vanishes faster than r 2  at r = 0. 

When Q has been chosen to satisfy ( 5 5 ) ,  (49)  is satisfied by 

The  first term 

1 aQ R’(x ,  t )  = -- - 
r ar  (57)  

averages to zero on each sphere with centre 0, and vanishes outside the sources; the 
second term is a function of r and t alone. If 4 =47r 1 r 2 p  dr  is the total charge, then 
outside the sources 

and 

47rxR = Vq/r  v . (4 7rxR j = 0. (59) 
Using (50) and V .  B = 0 to justify the introduction of potentials, we have the forms 

E = x X V W + V X (X X V ) X  - 4 r ( V Q  + XR ) 
B = x  XVY + V  X (x x V ) Z .  

Because of ( 5 2 ) ,  these equations d o  not reduce to ( 3 5 )  and (36) in the harmonic case 
unless the potentials are redefined (which, of course, they can be). The  time-dependent 
Maxwell’s equations now imply 

w = - ( Z / c )  - V 2 X + 4 r R ‘ =  - ( Y / c )  

and 

Y = ( X / c )  + (47rlC)S -v2z = ( W / C )  + (47r/c)P. 

Therefore 

E = -( 1 / C ) X  X V Z  + V X (X X V ) X  - 47r(VQ + X R  j 

s = + ~ l / c ) x x v x + ~ X ( x X v ) z + ( 4 . ? r / c ) x X v s  
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with 

02z - ( 2 / c 2 )  = - ( 4 r / c ) P  

V 2 X  - ( X / C ’ )  = ~ T [ R ’ +  ( S ~ C ’ ) ] .  

Outside the source (62)  and (63)  reduce to 

E = - ( l / c ) x  X V Z  + V  x ( x  x v ) x + ( q x / r 3 )  

B = +( 1 / c  )x x v x  + v x (x x V ) Z .  

The retarded solution to (64)  is 

1 
C /x  - X’I 

P(x’ ,  t - /x  -x’l/c) 
Z ( X , f ) = -  j d d  

and the solution of (65)  is similar. 

have 
The potentials Z ( x ,  t )  and X ( x ,  t )  can be expanded in spherical harmonics; for Z we 

where 

1 Zi, (r,  t )  = - I dx’ 1 dR 
YT, ( . f )P (x ’ ,  t - Ix -x‘I /c)  

C Ix - X I /  

Using the addition theorem for spherical harmonics in order to express the R integra- 
tion with respect to 2‘ as pole we get (Campbell et a1 1977) 

After introducing the angular decomposition for the current potential P ( x ,  t ) ,  21, takes 
the form 

Outside the source we may change from the variable v to 77 given by 

( r 2  + r r 2  - 2rr‘v)’’’ = r - Tr’. 

This transforms (70)  to 

2T 
Zim(r, t )  = - 1 r” dr‘ I-, dq Pi[q + r ’ ( 1 -  q2)/2r]Pi,(r’, t - r / c  + qr’ /c ) .  cr 

In this form it is easy to check that Zim satisfies 

SI 

which, from (64)  and (691, it must do beyond the sources. 

(1970) and Campbell er a1 (1977). 
Additional developments of the time-dependent case have been made by Kemmer 
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